Immediate bonding properties of universal adhesives to dentine

Immediate bonding properties of universal adhesives to dentine

Author links open overlay panel

Miguel AngelMuñozabIssisLuqueaVivianeHassaAlessandraReisaAlessandro DouradoLoguercioaNara Hellen CampanhaBombardaa

Show more

https://doi.org/10.1016/j.jdent.2013.03.001

Get rights and content

Open Access funded by Brazilian Government

Under an Elsevier user license

open access

Abstract

Objectives

To evaluate the dentine microtensile bond strength (μTBS), nanoleakage (NL), degree of conversion (DC) within the hybrid layer for etch-and-rinse and self-etch strategies of universal simplified adhesive systems.

Methods

forty caries free extracted third molars were divided into 8 groups for μTBS (n = 5), according to the adhesive and etching strategy: Clearfil SE Bond [CSE] and Adper Single Bond 2 [SB], as controls; Peak Universal Adhesive System, self-etch [PkSe] and etch-and-rinse [PkEr]; Scotchbond Universal Adhesive, self-etch [ScSe] and etch-and-rinse [ScEr]; All Bond Universal, self-etch [AlSe] and etch-and-rinse [AlEr]. After restorations were constructed, specimens were stored in water (37 °C/24 h) and then resin–dentine sticks were prepared (0.8 mm2). The sticks were tested under tension at 0.5 mm/min. Some sticks from each tooth group were used for DC determination by micro-Raman spectroscopy or nanoleakage evaluation (NL). The pH for each solution was evaluated using a pH metre. Data were analyzed with one-way ANOVA and Tukey’s test (α = 0.05).

Results

For μTBS, only PkSe and PkEr were similar to the respective control groups (p > 0.05). AlSe showed the lowest μTBS mean (p < 0.05). For NL, ScEr, ScSe, AlSe, and AlEr showed the lowest NL similar to control groups (p < 0.05). For DC, only ScSe showed lower DC than the other materials (p < 0.05).

Conclusions

Performance of universal adhesives was shown to be material-dependent. The results indicate that this new category of universal adhesives used on dentine as either etch-and-rinse or self-etch strategies were inferior as regards at least one of the properties evaluated (μTBS, NL and DC) in comparison with the control adhesives (CSE for self-etch and SB for etch-and-rinse).

Keywords

Microtensile bond strengthNanoleakageDegree of conversionEtch-and-rinseSelf-etchUniversal simplified adhesive systems

1. Introduction

The bonding mechanism of adhesive systems basically involves the replacement of minerals removed from the hard dental tissue by resin monomers, in such a way that a polymer becomes micro-mechanically interlocked to the dental substrate.1 However, the adhesive systems available on the market can be classified into two categories: etch-and-rinse (Er) and those applied using self-etch strategies (Se), in versions of three (only Er), two or one application step.2, 3

When using the Er strategy, the first step involves the application of a phosphoric acid gel to both dental substrates, which allows removal of the smear layer, exposure of the collagen fibrils in dentine, and increase in surface area and surface energy in the enamel substrate. The primer is then applied (second step) followed by the bond (third step) resin separately or in a single solution.2, 3, 4 Irrespective of the number of steps, the main disadvantage of the Er system, mainly two-step versions, is that there is risk of collagen fibre collapse during the process of demineralized dentine drying, which leads to a decrease in bond strength.5, 6 The collagen collapse is prevented by keeping demineralized dentine moist, which is a difficult task to perform clinically. In fact, adequate moisture depends on both the solvent used in the material7 and on the clinician’s interpretation of the manufacturer’s directions.

The incomplete impregnation of collagen fibers8 and the need to protect them against the degrading mechanisms present in the oral cavity environment,9, 10 led to the development of the second category, an adhesive using the self-etch strategy.

In the Se strategy (one-step or two-step), there is no need to apply a preliminary phosphoric acid gel on dental substrates as dentine demineralization and priming occur simultaneously.3, 11 The dissolved hydroxyapatite crystals and residual smear layer are incorporated in the hybridized complex.3, 12 Except for very acidic Se systems,13, 14 the whole extension of the demineralized dentine depth is impregnated by resin monomers, which may be the reason why Se systems are not associated with the technique sensitivity characteristic of bonding to moist etched dentine.7, 15, 16 This advantage makes Se materials suitable for areas where adequate control of moisture is rather difficult, such as in posterior restorations.

A clear disadvantage of the Se protocol is the reduction in enamel bonding effectiveness.17, 18 The increase in surface area in intact and ground enamel obtained with Se adhesives is lower than that achieved with phosphoric acid, and it depends on the pH of the Se adhesive.18 The performance of Se adhesives has improved when these systems were applied to phosphoric acid-treated enamel.12, 19, 20 However, this procedure has been shown to be unsuitable for use on the dentine substrate,21, 22, 23 because accidental dentine etching may occur during the enamel-etching process, particularly when a low-viscosity etchant is used. The effect of intentionally etching dentine with phosphoric acid prior to the application of self-etch adhesives has been studied.21, 23, 24, 25, 26 The results are controversial and material-dependent.

Considering the differences in professional judgement regarding the selection of the adhesive strategy and number of steps, some manufacturers have released more versatile adhesive systems that include etch-and-rinse (two step) and self-etch (one or two step) options. These new materials are called “Universal”, “Multi-purpose” or “Multi-mode” adhesives.23, 27 There is little information in the literature about the performance of this new class of universal adhesives.23, 27 Thus, this study compared the immediate microtensile bond strengths (μTBS), nanoleakage (NL), in situ degree of conversion (DC) of three universal adhesives applied to dentine according to the etch-and-rinse and the self-etch strategies. The two-step etch-and-rinse, Adper Single Bond 2 (SB, 3M ESPE, St. Paul, MN, USA), and two-step self-etch, Clearfil SE Bond (CSE, Kuraray, Okayama, Japan) were also evaluated as control groups. The following null hypotheses were tested in this study: (1) universal adhesives applied to dentine according to the Er and the Se strategies when compared to their respective control groups do not affect the immediate resin–dentine bond strength; (2) universal adhesives applied to dentine according to the Er and the Se strategies when compared to their respective control groups do not affect the immediate silver nitrate deposition and (3) universal adhesives applied to dentine according to the Er and the Se strategies when compared to their respective control groups do not affect the degree of conversion of the adhesives.

2. Materials and methods

2.1. Tooth selection and preparation

Forty extracted, caries-free human third molars were used. The teeth were collected after obtaining the respective patients’ informed consent under a protocol approved by the local Ethics Committee Review Board. The teeth were disinfected in 0.5% chloramine, stored in distilled water and used within six months after extraction. A flat dentine surface was exposed after wet grinding the occlusal enamel on a #180 grit SiC paper. The exposed dentine surfaces were further polished on wet #600-grit silicon-carbide paper for 60 s to standardize the smear layer.

2.2. Experimental design

The teeth were randomly assigned into eight groups (n = 5) according to the different bonding strategies of the selected adhesive system. As control materials, the 2-step etch-and-rinse (Er), Adper Single Bond 2 (SB, 3M ESPE, St. Paul, MN, USA); and the 2-step self-etch (Se), Clearfil SE Bond (CSE, Kuraray, Okayama, Japan) were used. The following three universal adhesive systems were tested: Peak Universal Adhesive System (Peak LC Bond and Peak SE Primer, Ultradent Products Inc., South Jordan, UT, USA), applied as a 2-step Er (PkEr) and 2-step Se (PkSe); Scotchbond Universal Adhesive (3M ESPE, St. Paul, MN, USA), applied as a 2-step Er (ScEr) and 1-step Se (ScSe); and All Bond Universal (Bisco Inc., Shaumburg, IL, USA) applied as a 2-step Er (AlEr) and 1-step Se (AlSe).

2.3. Restorative procedure and specimen preparation

The adhesive systems were applied strictly in accordance with the respective manufacturer’s instructions, described in Table 1. After the bonding procedures, all teeth received a microhybrid composite restoration (Opallis, FGM Produtos Odontológicos, Joinville, SC, Brazil) in two increments of 2 mm. Each increment was light polymerized for 40 s using a LED light curing unit set at 1200 mW/cm2 (Radii-cal, SDI Limited, Bayswater, Victoria, Australia).

Table 1. Adhesive system (batch number), composition and application mode* of the adhesive systems used (*) according to the manufacturer’s instructions.

Adhesive system (batch number) Composition Self-etch strategy Etch-and-rinse strategy
Adper Single Bond 2 (BPBR) 1. Etchant: 35% phosphoric acid (Scotchbond Etchant)

2. Adhesive: bis-GMA, HEMA, dimethacrylates, ethanol, water, photoinitiator, methacrylate functional copolymer of polyacrylic and poly(itaconic) acids,10% by weight of 5 nm-diameter spherical silica particles

N.A 1. Apply etchant for 15 s

2. Rinse for 10 s

3. Blot excess water

4. Apply 2–3 consecutive coats of adhesive for 15 s with gentle agitation

5. Gently air dry for 5 s

6. Light polymerize for 10 s at 1200 mW/cm2

Clearfil SE Bond (Primer: 00954 A – Bond: 01416A) 1. Primer: water, MDP, HEMA, camphorquinone, hydrophilic dimethacrylate

2. Bonding: MDP, bis-GMA, HEMA, camphorquinone, hydrophobic dimethacrylate, N,N-diethanol p-toluidine bond, colloidal silica

1. Apply primer to tooth surface and leave in place for 20 s

2. Dry with air stream to evaporate the volatile ingredients

3. Apply bond to the tooth surface and then create a uniform film using a gentle air stream

4.Light polymerize for 10 s at 1200 mW/cm2

N.A
Peak Universal Adhesive System (Peak SE Primer: 0N062 – Peak LC Bond: Y062) 1. Etchant: 35% phosphoric acid (Ultraetch)

2. Peak SE Primer: ethyl alcohol, methacrylic acid, 2-hydroxyethyl methacrylate (Peak SE Primer)

3. Peak LC Bond resin: ethyl alcohol, 2-hydroxyethyl methacrylate (Peak LC Bond)

1. Initial use of Peak SE requires activation of the two components separated in the syringe

2. Application of the Peak SE with microbrush for 20 s using continuous scrubbing on dentine. Do not scrub enamel

3. Thin/dry for 3 s using air/water syringe or high volume suction directly over preparation

4. Apply a puddle coat of Peak LC Bond and gently agitate for 10 s

5. Thin/dry 10 s using ¼ to ½ air pressure

6. Light polymerize for 10 s at 1200 mW/cm2

1. Apply etchant for 20 s

2. Rinse for 5 s

3. Air dry 2 s

4. Apply a puddle coat of Peak LC Bond with gently agitate for 10 s

5. Dry 10 s using ¼ to ½ air pressure

6. Light polymerize for 10 s at 1200 mW/cm2

Scotchbond Universal Adhesive (D-82229) 1. Etchant: 34% phosphoric acid, water, synthetic amorphous silica, polyethylene glycol, aluminium oxide. (Scotchbond Universal Etchant)

2. Adhesive: MDP phosphate monomer, dimethacrylate resins, HEMA, methacrylate-modified polyalkenoic acid copolymer, filler, ethanol, water, initiators, silane

1. Apply the adhesive to the entire preparation with a microbrush and rub it in for 20 s. If necessary, rewet the disposable applicator during treatment

2. Direct a gentle stream of air over the liquid for about 5 s until it no longer moves and the solvent has evaporated completely

3. Light polymerize for 10 s

1. Apply etchant for 15 s

2. Rinse for 10 s

3. Air dry 2 s

4. Apply adhesive as for the self-etch mode

All-Bond Universal (1200006111) 1. Etchant Uni-Etch: 32% phosphoric acid, benzalkonium Chloride

2. Adhesive: MDP, bis-GMA, HEMA, ethanol, water, initiators

1. Apply two separate coats of adhesive, scrubbing the preparation with a microbrush for 10–15 s per coat. Do not light polymerize between coats

2. Evaporate excess solvent by thoroughly air-drying with an air syringe for at least 10 s, there should be no visible movement of the material. The surface should have a uniform glossy appearance

3. Light polymerize for 10 s at 1200 mW/cm2

1. Apply etchant for 15 s

2. Rinse thoroughly

3. Remove excess water with absorbent pellet or high volume suction for 1–2 s

4. Apply adhesive as for the self-etch mode

After the restored teeth had been stored in distilled water at 37 °C for 24 h, the specimens were sectioned longitudinally in the mesio-distal and buccal-lingual directions across the bonded interface, using a slow-speed diamond saw (Isomet, Buehler Ltd., Lake Bluff, IL, USA) to obtain 15–20 resin–dentine sticks with a cross sectional area of approximately 0.8 mm2 measured with a digital calliper (Digimatic Calliper, Mitutoyo, Tokyo, Japan).

All the specimens from each tooth were used for the microtensile bond strength evaluation (μTBS), except for six that were randomly selected. These six resin–dentine bonded specimens were divided for measurement of the in situ degree of conversion (DC) and nanoleakage (NL).

2.4. Microtensile bond strength test (μTBS)

Resin–dentine bonded sticks were attached to a Geraldeli’s jig28 with cyanoacrylate adhesive and tested under tension (Kratos Dinamometros, Cotia, SP, Brazil) at 0.5 mm/min until failure. The μTBS values were calculated by dividing the load at failure by the cross-sectional bonding area.

The failure mode of the specimens was classified as cohesive ([C] failure exclusive within dentine or resin composite), adhesive ([A] failure at resin/dentine interface), or mixed ([M] failure at resin/dentine interface, which included cohesive failure of the neighbouring substrates). The classification was performed under a stereomicroscope at 100× magnification (Olympus SZ40, Tokyo, Japan). Specimens with premature failures (PF) were included in the tooth mean.

2.5. Degree of conversion in situ (DC)

Three resin–dentine bonded sticks from each tooth were wet polished with #1500, 2000 and 2500-grit SiC paper. Then they were ultrasonically cleaned for 20 min and stored in water at 37 °C for 24 h, before taking the DC readings. The micro-Raman spectroscopy analysis was performed using the Senterra equipment (Bruker Optik GmbH, Ettlingen, Baden-Württemberg, Germany). The micro-Raman spectrometer was first calibrated by resetting to zero, and then for coefficient values using a silicon specimen. Specimens were analyzed using the following micro-Raman parameters: 20 mW Neon laser with 532 nm wavelength, spatial resolution of ≈3 μm, spectral resolution ≈5 cm−1, accumulation time of 30 s with 6 co-additions, and 110× magnification (Olympus UK, London, UK) to a ≈1 μm beam diameter. Spectra were taken at the dentine–adhesive interface at three different sites within intertubular dentine for each resin–dentine bonded stick. The average value of the measurements taken from the same tooth was used for statistical purposes. Spectra of unpolymerized adhesives were taken as reference. Post-processing of spectra was performed using the dedicated Opus Spectroscopy Software version 6.5. The ratio of double-bond content of monomer to polymer in the adhesive was calculated according to the following formula:

DC

(

%

)

=

1

R

(

cured

)

R

(

uncured

)

×

100

where “R” is the ratio of aliphatic and aromatic peak areas at 1639 cm−1 and 1609 cm−1 in polymerized and unpolymerized adhesives. The in situ DC of all resin–dentine bonded sticks from the same tooth was averaged for statistical purposes.

2.6. Nanoleakage (NL) evaluation

Three resin-bonded sticks, from each tooth, were used for NL evaluation. Ammoniacal silver nitrate was prepared according to the protocol previously described by Tay et al.29 The sticks were placed in the ammoniacal silver nitrate solution in darkness for 24 h, rinsed thoroughly in distilled water, and immersed in photo developing solution for 8 h under a fluorescent light to reduce silver ions into metallic silver grains within voids along the bonded interface. Specimens were polished with a wet #600, 1000, 1200, 1500, 2000 and 2500-grit SiC paper and 1 and 0.25 μm diamond paste (Buehler Ltd., Lake Bluff, IL, USA) using a polishing cloth. They were ultrasonically cleaned, air dried, mounted on stubs, and coated with carbon-gold (MED 010, Balzers Union, Balzers, Liechtenstein). Resin–dentine interfaces were analyzed in a field-emission scanning electron microscope operated in the backscattered mode (LEO 435 VP, LEO Electron Microscopy Ltd., Cambridge, UK).

Three images were captured of each resin–dentine bonded stick. The relative percentage of NL within the adhesive and hybrid layers in each specimen was measured in all images using the UTHSCSA ImageTool 3.0 software (Department of Dental Diagnostic Science at The University of Texas Health Science Centre, San Antonio, Texas) by a blinded researcher. The values originating from the same specimen were averaged for statistical purposes. The mean NL of all sticks from the same tooth was averaged for statistical purposes.

2.7. pH measurement

The pH of the adhesive systems was measured with a pH metre E520 (Metrohm, Herisau, Switzerland). Three blends were prepared by mixing each adhesive solution and deionized water in a proportion of 1:9 (by weight). This blend was kept stored in darkness for 12 h to allow uptake of H+. For each blend, three readings were performed at room temperature, in darkness and a mean was obtained.

2.8. Statistical analysis

Data from μTBS, NL, DC and pH were analyzed by one-way ANOVA and Tukey’s post hoc test at α = 0.05.

3. Results

3.1. Microtensile bond strength test

The overall values of all tested properties are shown in Table 2. Significant differences were detected in the mean μTBS among the adhesives tested (p < 0.05). Only the universal adhesive PK, used in both the Er and Se approach, showed mean μTBS statistically similar to those of the controls SB and CSE respectively (p > 0.05). The other universal materials resulted in lower mean μTBS than those of the Er and Se controls (p < 0.05). The lowest mean μTBS was observed for AISe (p < 0.05).

Table 2. Microtensile bond strength (μTBS), nanoleakage (NL) and degree of conversion (DC) values (means ± standard deviations) of the different experimental groups.*

Adhesive system Application mode Test
μTBS (MPa) NL (%) DC (%)
Adper Single Bond 2 Etch-and-rinse 49.3 ± 4.6A 12.4 ± 2.5b 85.4 ± 4.7a
Clearfil SE Bond Self-etch 43.0 ± 4.5A,B 7.6 ± 2.a 87.7 ± 2.8a
Peak Universal Adhesive System Etch-and-rinse 43.6 ± 4.6A,B 23.4 ± 5.9c 89.2 ± 6.3a
Self-etch 39.9 ± 4.5B,C 34.4 ± 11c 78.9 ± 9.5a
Scotchbond Universal Adhesive Etch-and-rinse 35.1 ± 6.6B,C 5.1 ± 2.5a 88.3 ± 5.6a
Self-etch 32.4 ± 4.5C 5.5 ± 3.2a 69.1 ± 9.8b
All Bond Universal Etch-and-rinse 39.3 ± 3.7B 9.3 ± 2.9b 77.9 ± 0.1a
Self-etch 13.4 ± 1.9D 6.2 ± 4.1a 77.8 ± 0.1a

*Similar capital (μTBS), lower (NL) and superscript letter (DC) are not statistically significant (p < 0.05)

The majority of the specimens (83.1%) showed adhesive/mixed failures. Cohesive failures were observed in 8.3% of the specimens. A small number of premature failures (8.6%) were observed in the present study (Table 3).

Table 3. Number and percentage of specimens (%) according to the fracture mode and premature failures of all experimental group.